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1. Introduction

One of the first steps in understanding the AdS/CFT correspondence is to set up a precise

dictionary between the states of the theories on the two sides of the correspondence. It is

well known that the parameters of the N = 4 SU(N) SYM, namely λ ≡ g2
Y MN and N

should be identified with the parameters of type IIB String Theory on AdS5 × S5, namely

LAdS , ℓs, gs, as

L2
AdS

4πℓ2
s

=

(

λ

4π

)
1

2

gs =
λ

N
. (1.1)

Type IIB Supergravity is a good approximation of String Theory at low energies compared

to the string scale and small string coupling. We may thus consider solutions to the

supergravity equations of motion which are asymptotically AdS5 × S5 as good candidates
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for dual of states in the CFT, provided that N ≫ λ ≫ 1 and any dimension four curvature

invariant of the solutions, R4, satisfies

R4L
4
AdS ≪ λ ≪ N . (1.2)

One may hope to be able to carry out this program in the full BPS sector of the

respective dual theories. A very beautiful and relatively simple construction of such a

dictionary in the half BPS sector has been performed in [1](LLM). The authors considered

geometries dual to half BPS states in the CFT, associated to chiral primary operators

which are obtained by taking traces of powers of the operator Z ≡ Z3 ≡ φ5 + iφ6, where

{φi}1≤i≤6 are the six adjoint scalars of the N = 4 SU(N) gauge theory. In LLM, exact

half BPS solutions to the supergravity equations of motion are derived by exploiting the

R × SO(4) × SO(4) bosonic symmetry of the problem. The complete geometry, together

with the self-dual 5-form, are determined by a single function z which is defined on a three

dimensional halfspace and which satisfies a linear elliptic differential equation: solutions

are thus specified by boundary conditions at infinity and on the boundary plane. LLM

were able to identify the boundary conditions giving rise to non-singular asymptotically

AdS5 × S5 geometries. The resulting space of classical solutions can be directly identified

with the phase space of the dual states of the gauge theory in the free fermion picture [2, 3].

The latter emerges after reducing the (single) scalar sector of the gauge theory on R× S3.

These solutions represent the geometrical transition between probe giant gravitons or dual

giant gravitons [4 – 7] and fully backreacted geometries. A giant graviton is a classical

D3-brane configuration wrapping an S3 ⊂ S5 and rotating along an equator of the S5. A

dual-giant graviton is another half-BPS D3-brane configuration that wraps an S3 ⊂ AdS5.

It is natural to ask how the above very precise correspondence between geometry on

the one hand, and features of the quantum mechanical states of the reduced gauge theory

on the other, extends to cases with less supersymmetry. In the recent literature there have

been various attempts in this direction: for example, in [8] one quarter BPS geometries

were found by assuming a non trivial axion-dilaton. This corresponds to putting smeared

D7 branes in the background and thus to adding flavour to the gauge theory. A descrip-

tion of one eighth and one quarter BPS geometries in the language of five dimensional

gauged supergravity has been given in [9]. The construction of a class of one quarter BPS

solutions directly in type IIB appeared in [10, 11]. Another interesting related work is

presented in [12]. This problem was also approached in the probe approximation, where

the backreaction on the geometry is neglected: D3 branes can wrap more complex three

dimensional surfaces in S5 and give rise to giant gravitons with fewer supersymmetries [13].

In [14] the authors have been able to count such states. The quantization of their classical

phase space has been performed in [15]. Other works that present interestng connection

with ours can be found in [16 – 18].

In this paper we address the problem of finding BPS supergravity solutions which rep-

resent the fully backreacted geometry of a class of 1/8 BPS giant gravitons. Our solutions

correspond to gauge theory states associated to linear combinations of composite operators

O(q, r) = Tr(Zq
1)Tr(Zq

2)Tr(Zr
3) + · · · . (1.3)
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where Z1, Z2 and Z3 are the three complex scalars of the N = 4 CFT. The dots signify

other terms with suitable (anti)-symmetrization and trace structures, which have all a total

of q Z1 and Z2 fields and r Z3 fields. They are chosen such that O(q, r) are chiral primary

operators which are invariant under the SU(2)L subgroup of the SU(2)L × SU(2)R acting

on Z1, Z2. We consider linear combinations of O(q, r) which have all the same value of q

but may have different values of r.

The lowest mode O(q, r) in the expansion on spherical harmonics on S3 saturates the BPS

bound:

∆ = 2q + r , (1.4)

where ∆ is the conformal dimension of the operator. The total amount of bosonic symme-

try preserved by the corresponding states is thus given by SO(4)KK × SU(2)L × U(1)R.

Consequently, we start from an Ansatz for the metric and the self-dual RR 5-form which

preserves this amount of symmetry. This implies, as for LLM, that the resulting back-

ground will depend non-trivially on three coordinates (an additional symmetry will be

associated to the time coordinate, like in LLM). We also require that the background pos-

sesses the required amount of supersymmetry by demanding that it possesses a Killing

spinor. Applying techniques similar to those in [1, 19 – 23] we have been able to express

the full solution in terms of four independent functions defined on a three dimensional

half-space. As a result of certain Bianchi identities and integrability conditions, these four

functions have to satisfy a system of nonlinear, coupled, elliptic differential equations. A

unique solution to these equations is obtained once a set of boundary conditions at infinity

and on the boundary plane is specified; boundary conditions should be chosen in such a

way as to give non-singular geometries with AdS5 × S5 asymptotics.

We present here the boundary conditions that give rise to asymptotically non-singular

AdS5 × S5 geometries. We solve the equations asymptotically up to third order in a large

radius expansion. From this analysis we can extract the two dimensionless charges Q and

J carried by the solution. These are the charges corresponding to two out of the three

U(1) Cartan gauge fields arising from the KK reduction of IIB supergravity on S5 to five

dimensional maximal gauged supergravity. These charges in turn correspond to the q and

r charges of the gauge theory side. Moreover, we verify that our solutions saturate the

expected BPS bound:

M =
πL2

AdS

4G5
(|J | + 2|Q|) . (1.5)

Unfortunately, a more exhaustive analysis of such boundary conditions is quite difficult

due to the complexity (non linearity) of the differential equations. In other words we do

not know which of the boundary conditions give rise to globally non-singular backgrounds.

We will comment on this issue in the conclusions. The paper is organized as follows. In

Section 2 we present the gauge theory description of the 1/8 BPS states that we wish to

study. In Section 3 we show how the 1/8 supersymmetry constrains the components of the

metric and 5-form and we reduce these constraints to four differential equations on four

scalar functions. In Section 4 we present the large radius asymptotic analysis. Appendix

A sets our conventions. In appendix B the complete derivation of the results presented in
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section 3 is given and in appendix C we make some observations on the formal tools used

to facilitate the analysis. Due to the complexity of the equations involved, we performed

the complete analysis by means of the software Mathematica. All the derivations that are

not described in full detail in the text were obtained with the help of such software.

2. Gauge theory analysis

Chiral primary operators of the N = 4 superconformal algebra SU(2, 2|4) were classified

in [24 – 26] and are characterized by the number of Poincare’ supersymmetries they preserve.

They can preserve 1
2 , 1

4 or 1
8 of the 16 Poincare’ supersymmetries. We will be interested in

operators that are composites of the six adjoint scalars φi of the N = 4 SU(N) gauge theory.

The simplest class is that of 1
2 -BPS operators the elements of which are characterized

by the SO(6) R-symmetry representations given by Young tableaux with a single row

of length p, i.e. traceless, symmetric SO(6) rank p tensors, or in Dynkin notation, the

[0, p, 0] of SU(4). In this case the conformal dimension ∆ is equal to p. The highest

weight of this representation can be obtained by using one of the complex adjoint scalars,

Z ≡ Z3 ≡ φ5 + iφ6, which has charge 1 with respect to the SO(2) generator, J3 ≡ L5,6
1 , in

SO(6). One can construct from Z the multitrace composite SU(N) singlet operators with

∆ = p. These operators therefore preserve an SO(4) ⊂ SO(6) times an SO(4) ⊂ SO(4, 2),

since the only modes satisfying the relation ∆ = p are the S3 scalars. This SO(4)×SO(4)

symmetry has been used in LLM as the isometry of the supergravity background and it is

the key for their (relatively) simple and beautiful solution. The lower supersymmetry cases

are again best described in terms of SO(6) Young tableaux: the 1
4 and 1

8 cases correspond to

tableaux with two rows (of lengths p, q, p ≥ q) and three rows (of lengths p, q, r, p ≥ q ≥ r)

respectively. The conformal dimensions saturate the bounds p+q and p+q+r respectively.

Again, in discussing highest weight states it is convenient to use the three complex scalars

Z1 = φ1 + iφ2, Z2 = φ3 + iφ4 and Z3, which have charges (1,0,0), (0,1,0) and (0,0,1)

with respect to the three Cartan generators (J1, J2, J3) SU(4) respectively. Highest weight

states saturate the BPS bound ∆ = J1 + J2 = p + q and ∆ = J1 + J2 + J3 = p + q + r in

the 1
4 and 1

8 case, respectively.

This is summarized in the following table:

p = q = 0, r 6= 0 p, q 6= 0, r = 0 p, q, r 6= 0

1/2BPS 1/4BPS 1/8BPS

Let us consider the 1
8 case: given the three complex scalars Z1, Z2, Z3 of the N = 4 SU(N)

Super Yang Mills theory one can construct a basis of gauge invariant, local, composite

operators in the [p, q, r] of the R-symmetry group SU(4) as [27]

Tr(Zp
1 )Tr(Zq

2)Tr(Zr
3) + · · · . (2.1)

where the dots mean suitable (anti)-symmetrization and trace structure that projects to

the chiral primaries in the (p, q, r) representation of SU(4).

1Here Ji = L2i−1,2i in terms of the standard generators of SO(6)
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We are interested in constructing duals of the states corresponding to such operators.

However, generic operators of this type break fully the non-abelian SO(6) R-symmetry, up

to possible U(1) factors which act by an overall phase on them. However, if

p = q . (2.2)

we can construct operators which are invariant under the SU(2)L of the SO(4) = SU(2)L×
SU(2)R which rotates the four real scalars











φ1

φ2

φ3

φ4











=











ℜeZ1

ℑm Z1

ℜeZ2

ℑm Z2











. (2.3)

This is best seen by observing that SU(2)L and SU(2)R act as left and right multiplication

respectively on:
(

Z1 −Z̄2

Z2 Z̄1

)

Therefore Z1 and Z2 transform as a doublet of SU(2)L, whereas they have the same charge

under J3
R = J1+J2

2 . The operators with p = q are clearly singlets of SU(2)L, and they

acquire an overall phase under J3
R. They satisfy the relation

∆ = 2q + r . (2.4)

The bosonic symmetry preserved by these states is:

RBPS ×
(

SU(2)L × U(1)R
)

R−charge
× SO(4)KK (2.5)

where the first R corresponds to the transformations generated by

D′ ≡ D − 2J3
R − J , (2.6)

with J = J3 acting on Z, D is the dilatation operator and the last SO(4) factor represents

the fact that we are considering s-wave modes on S3 in the reduction of SYM theory on

R × S3 [28]. These are the symmetries that will motivate the Ansatz for the metric and

five-form on the supergravity side: we will keep a round 3-sphere with the SO(4) isometry

corresponding to the SO(4) above. Another S3 (related to the SO(4) R-symmetry of the 1
2

BPS case) which is in the S5 of the AdS5 ×S5 background, will be squashed with isometry

group reduced to SU(2)L × U(1)R.

It will be useful for the subsequent analysis of the Killing spinor equation on the

supergravity side, to understand the quantum numbers of the preserved supersymmetries.

In an N = 1 and SU(3) × U(1) ⊂ SU(4) notation, the supersymmetry variations of the

complex scalars Zi are:

δZi = ξiλ + ξψi + ǫijkξ̄
jψ̄k, (2.7)

Here the two-component spinors λ and ψi are the gaugino and the chiral matter fermions,

while ξ and ξi are the supersymmetry parameters. They are in the 13/2 and 3−1/2 of
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SU(3)U(1) respectively. More precisely the Cartan charges of λ, ξ are (1
2 , 1

2 , 1
2 ), and those

of ψ1, ξ1 are (1
2 ,−1

2 ,−1
2), and similarly for ψ2,3, ξ2,3. From (2.7) it is clear that the highest

weight 1
8 BPS operators are invariant under the supersymmetry corresponding to ξ̄. As

for the SU(2)L × SU(2)R = SO(4) ⊂ SU(3) quantum numbers, the roots of SU(2)L are

(±1,∓1, 0) and those of SU(2)R are (±1,±1, 0). Therefore the preserved supersymmetry

parameter ξ̄, whose charges are (−1
2 ,−1

2 ,−1
2), is a singlet of the unbroken SU(2)L and

lowest weight with respect to the broken SU(2)R.

3. Generic solutions

We are looking for supergravity solutions dual to BPS states constructed from linear com-

binations of the operators

O(q, r) = Tr
(

Zq
1

)

Tr
(

Zq
2

)

Tr
(

Zr
3

)

+ · · · (3.1)

for constant q, where the meaning of the dots has been explained in the previous two

sections. The geometries will thus be invariant under SU(2)L ×SO(4)KK as defined in the

previous section and invariant but charged under the remaining U(1)R. The extra non-

compact time-like symmetry (RBPS of the previous section) is associated to invariance

under the transformations generated by D′ in the gauge theory and will emerge naturally

in our construction2.

The most generic Ansatz consistent with these symmetries is given by

ds2 = gµνdxµdxν + ρ2
1

[

(σ1̂)2 + (σ2̂)2
]

+ ρ2
3(σ

3̂ − Aµdxµ)2 + ρ̃2dΩ̃2
3 . (3.2)

where ρ1, ρ3, ρ̃, Aµ and gµν are functions of the four coordinates xµ. The space is a

fibration of a squashed 3-sphere (on which the SU(2) left-invariant 1-forms σâ are defined)

and a round 3-sphere (on which the SU(2) left-invariant 1-forms σã are defined) over a

four dimensional manifold.

The left invariant 1-forms are given by

σ1̂ = −1
2(cos ψ̂ dθ̂ + sin ψ̂ sin θ̂ dφ̂) σ1̃ = −1

2(cos ψ̃ dθ̃ + sin ψ̃ sin θ̃ dφ̃)

σ2̂ = −1
2(− sin ψ̂ dθ̂ + cos ψ̂ sin θ̂ dφ̂) σ2̃ = −1

2(− sin ψ̃ dθ̃ + cos ψ̃ sin θ̃ dφ̃)

σ3̂ = −1
2(dψ̂ + cos θ̂ dφ̂) σ3̃ = −1

2(dψ̃ + cos θ̃ dφ̃)

(3.3)

and satisfy the relations

dσî = ǫ̂iĵk̂σ
ĵ ∧ σk̂

dσĩ = ǫ̃ij̃k̃σ
j̃ ∧ σk̃ .

(3.4)

With this normalization the metric on the unit radius round three sphere is given by

dΩ2
3 = (σ1)2 + (σ2)2 + (σ3)2 , (3.5)

2See appendix B for details.
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with σa being either σâ or σã.

We choose our “d-bein” to be

em =εm
µdxµ (3.6)

eâ =

{

ρ1σ
â a = 1, 2

ρ3(σ
3̂ − Aµdxµ) a = 3

(3.7)

eã =ρ̃σã (3.8)

Since we are looking for the geometric dual to operators which involve only scalar fields

in the gauge theory, the only possible non-zero Ramond-Ramond field strength is the five

form F(5) and the dilaton is assumed to be constant. The most generic Ansatz for the five

form which is invariant under the given symmetries is:

F(5) = 2
(

G̃mnem ∧ en + Ṽmem ∧ e3̂ + g̃e1̂ ∧ e2̂
)

∧ ρ̃3dΩ̃3+

2
(

−Gpqe
p ∧ eq ∧ e1̂ ∧ e2̂ ∧ e3̂ + ⋆4Ṽ ∧ e1̂ ∧ e2̂ − ⋆4g̃ ∧ e3̂

)

, (3.9)

where

Gmn =
1

2
ǫmnpqG̃

mn (3.10)

⋆4Ṽ =
1

3!
ǫmnpqṼ

men ∧ ep ∧ eq (3.11)

⋆4g̃ = g̃e0 ∧ e1 ∧ e2 ∧ e3 (3.12)

The Bianchi identity dF(5) = 0 implies:

d
(

G̃ρ̃3 − Ṽ ∧ Aρ3ρ̃
3
)

= 0 (3.13)

Ṽ =
1

2

1

ρ3ρ̃3
d(g̃ρ2

1ρ̃
3) (3.14)

d
(

Gρ2
1ρ3

)

= 0 (3.15)

d
(

Gρ2
1ρ3 ∧ A + ⋆4Ṽ

)

− 2 ⋆4 g̃ = 0 . (3.16)

Since we are looking for the dual of BPS states, the background should preserve a fraction

of the supersymmetry and so there should exist a supersymmetry parameter ψ such that

the gravitino variation vanishes:

δχM = ∇Mψ +
i

480
FM1M2M3M4M5

ΓM1M2M3M4M5ΓMψ = 0 . (3.17)

The Bianchi identity and the existence of the spinor ψ are sufficient for our supergravity

background to satisfy the full equations of motion of type IIB Supergravity.

The existence of the spinor ψ is also sufficient to express the complete solution in the

following form:

ds2 = −h−2(dt + Vidxi)2 + h2 ρ2
1

ρ2
3

(T 2δijdxidxj + dy2) + ρ̃2dΩ̃2
3+

+ ρ2
1

(

σ̂2
1 + σ̂2

2

)

+ ρ2
3(σ̂3 − Atdt − Aidxi)2 (3.18)
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where the coordinate y is the product of two radii

y = ρ1ρ̃ > 0 , (3.19)

and the function h is given by

h−2 = ρ̃2 + ρ2
3(1 + At)

2 . (3.20)

The vector ∂t is the Killing vector which generates the extra non-compact timelike U(1)

and thus all the entries of the metric depend only on (x1, x2, y), where y is constrained to

be positive. They can be expressed in terms of four independent functions:

m,n, p, T

as follows:
ρ4
1 = mp+n2

m y4 ρ4
3 = p2

m(mp+n2)
ρ̃4 = m

mp+n2

h4 = mp2

mp+n2 At = n−p
p Ai = AtVi − 1

2ǫij∂j ln T
(3.21)

and

dV = −y ⋆3 [dn + (nD + 2ym(n − p) + 2n/y)dy] (3.22)

∂y ln T = D (3.23)

D ≡ 2y(m + n − 1/y2) , (3.24)

where ⋆3 indicates the Hodge dual in the three dimensional diagonal metric

ds2
3 = T 2δijdxidxj + dy2 . (3.25)

The various four-dimensional forms from which the 5-form field strength is constructed are

g̃ =
1

4ρ̃

[

1 − ρ2
3

ρ2
1

(1 + At)

]

(3.26)

Ṽ =
1

2

1

ρ3ρ̃3
d(g̃ρ2

1ρ̃
3) (3.27)

Gρ2
1ρ3 = dBt ∧ (dt + Vidxi) + BtdV + dB̂ (3.28)

G̃ρ̃3 =
1

2
gρ2

1ρ̃
3dA + dB̃t ∧ (dt + Vidxi) + B̃tdV + d ˆ̃B , (3.29)

where

B̃t = − 1

16
y2 n − 1/y2

p

d ˆ̃B = − 1

16
y3 ⋆3 [dm + 2mD dy]

Bt = − 1

16
y2 n

m

dB̂ =
1

16
y3 ⋆3 [dp + 4yn(p − n)dy] .

(3.30)
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Differential equations

The Bianchi identities and the integrability condition for the equation (3.22) give











ddV = 0

dd ˆ̃B = 0

ddB̂ = 0

. (3.31)

These three conditions together with (3.24) give a system of nonlinear coupled elliptic

differential equations

y3(∂2
1 + ∂2

2)n + ∂y

(

y3T 2∂yn
)

+ y2∂y

[

T 2
(

yDn + 2y2m(n − p)
)]

+ 4y2DT 2n = 0

y3(∂2
1 + ∂2

2)m + ∂y

(

y3T 2∂ym
)

+ ∂y

(

y3T 22mD
)

= 0

y3(∂2
1 + ∂2

2)p + ∂y

(

y3T 2∂yp
)

+ ∂y

[

y3T 24ny(n − p)
]

= 0

∂y ln T = D .

(3.32)

A solution to these equations is determined by a set of boundary conditions at infinity

(large values of y, xi) and on the plane y = 0; they should be chosen in such a way as to

give a non-singular geometry asymptotic to AdS5 × S5. Due to the non-linearity of the

equations the relationship between boundary conditions and non-singular solutions with

AdS5 × S5 asymptotics is difficult to control. This set of boundary conditions may be

regarded as a parametrisation of the space of solutions to our problem.

The LLM limit

The LLM solutions are clearly a subset of ours. They are specified by the additional

constraints,

n = p =
1

y2
− m =

1/2 − z

y2
T = 1 . (3.33)

In this case we have

D = 0 ρ1 = ρ3 = ρ At = 0 T = 1 (3.34)

and the three second order equations collapse to one single linear equation

y3(∂2
1 + ∂2

2)n + ∂y

(

y3T 2∂yn
)

. (3.35)

As this equation is linear it has been possible to completely identify the boundary conditions

at y = 0 and at infinity that give rise to regular asymptotically AdS5×S5 geometries [1, 29].

This set of boundary conditions can be directly identified with the classical phase space of

the dual states in the free fermion picture.

4. Asymptotics and charges

In this section we discuss asymptotic solutions to the differential equations of the previous

section wich give AdS5 × S5 asymptotics 3. We solve the equations to third order in an

expansion for large values of y, x1, x2.

3A study of more general boundary conditions at y = 0 will be presented in [30].
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We can identify the boundary conditions at infinity by comparing the leading order of

this expansion to the same order of LLM, requiring in particular AdS5 × S5 asymptotics.

The first corrections to the AdS5 ×S5 geometry capture the global U(1) charges under the

gauge fields arising in the Kaluza Klein reduction of IIB supergravity over S5. We will show

that the solutions support non-vanishing fluxes for the the KK gauge fields associated to

two of the three Cartan generators of the SO(6) isometry of S5. In the dual gauge theory

picture these generators map to the R-symmetry generators L5,6 and L1,2 + L3,4.

It is not hard to see that the following expressions for our functions

m ∼ 1

y2
− p1

R4

n ∼ p1

R4

p ∼ p1

R4

T ∼ 1

(4.1)

satisfy the equations at leading order for large R, with (R, θ, φ) polar coordinates in the

(x1, x2, y) space and p1 is a constant parameter. We have also, to the same order,

Vφ ∼ p1 cos2 θ

R2
Vr ∼ O

(

1

R4

)

, (4.2)

with r2 = x2
1 + x2

2, r = R cos θ and y = R sin θ.

Defining

R̃ = R/
√

p1

φ̃ = φ − t
(4.3)

we get

ds2 =
√

p1

(

−R̃2dt2 +
dR̃2

R̃2
+ R̃2dΩ̃2

3 + dθ2 + cos2 θdφ̃2 + sin2 θdΩ̂2
3

)

(4.4)

which is AdS5 × S5 in Poincare coordinates. The parameter p1 and the radius L of AdS5

are related by

L2 =
√

p1 . (4.5)

We recall here the expression for the left-invariant one forms

σ1̂ = −1
2(cos ψ̂ dθ̂ + sin ψ̂ sin θ̂ dφ̂)

σ2̂ = −1
2(− sin ψ̂ dθ̂ + cos ψ̂ sin θ̂ dφ̂)

σ3̂ = −1
2(dψ̂ + cos θ̂ dφ̂) .

(4.6)

The metric on the unit radius round three sphere dΩ̂3 is

dΩ̂2
3 =

(

σ1̂
)2

+
(

σ2̂
)2

+
(

σ3̂
)2

=
1

4

(

dθ̂2 + dφ̂2 + dψ̂2 + 2cos θ̂dψ̂dφ̂
)

. (4.7)
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We can transform it into the more conventional form

dΩ̂2
3 = dω2 + cos2 ω dφ2

1 + sin2 ω dφ2
2 (4.8)

where

ω =
θ̂

2
φ1 =

ψ̂ + φ̂

2
φ2 =

ψ̂ − φ̂

2
. (4.9)

We will now consider the next two orders in the asymptotic expansion of our functions

and solve the differential equations. For the sake of simplicity we will assume that ∂φ is

also a Killing vector of our solutions. Despite this simplifying assumption, in general the

solutions will still be charged under the corresponding KK gauge field. From the geometric

point of view this means that the solutions are generically stationary. On the gauge theory

side, this choice corresponds to looking for duals of linear combinations of states which

have all the same L56 charge4 and are thus constructed from linear combinations of O(q, r)

at fixed q and r.

We thus assume the following expansion of our functions:

m ∼ 1

y2
− p1

R4
+

m2(θ)

R6
+

m3(θ)

R8

n ∼ p1

R4
+

n2(θ)

R6
+

n3(θ)

R8

p ∼ p1

R4
+

p2(θ)

R6
+

p3(θ)

R8

T ∼ 1 +
t1(θ)

R2
+

t2(θ)

R4
.

(4.10)

Recalling that D = 2y(m + n − 1/y2), the equation

∂y ln T = D (4.11)

implies that

t1(θ) = 0 . (4.12)

Moreover we note that

Vφ ∼ p1 cos2 θ

R2
+

V2(θ)

R4
Vr = 0 . (4.13)

With a suitable coordinate transformation















R =
√

p1R̃ + h1(θ̃)

R̃

θ = θ̃ + g1(θ̃)

R̃2

φ = φ̃ + t

(4.14)

4The analog of this choice in the LLM picture would be to consider solutions seeded by rotationally

symmetric configurations of bubbles on the y = 0 plane.
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it should be possible to bring the metric to the following form:

ds2 = Ω(R̃, θ̃)L2

[

−(1 + R̃2 − R̃2
0

R̃2
)dt2 +

dR̃2

R̃2
(1 − 1

R̃2
) + R̃2dΩ̃2

3

]

+

+ L2

[

gθ̃θ̃dθ̃2 + gφ̃φ̃ cos2 θ̃

(

dφ̃ +
J

R̃2
dt

)2

+

+ gωω sin2 θ̃dω2 + gφφ sin2 θ̃

(

cos2 ω(dφ1 −
Q

R̃2
dt)2 + sin2 ω(dφ2 −

Q

R̃2
dt)2

)]

(4.15)

up to subleading corrections. To the leading order the metric components gθ̃θ̃ = gφ̃φ̃ =

gωω = gφφ = 1 and reproduce S5. The constants J and Q are proportional to the total

flux of the U(1) gauge fields arising from the KK reduction of the supergravity over S5.

In particular Q is the total charge of the solutions under both the gauge field associated

with coordinate transformations generated by λ(ξ)∂φ1
and µ(ξ)∂φ2

(being ξ coordinates in

the AdS5 factor); these are dual respectively to the J1 = L1,2 and J2 = L3,4 R-symmetry

generators. For this reason the expected BPS relation is

M =
πL2

4G5
(|J | + 2|Q|) . (4.16)

The conformal factor Ω(R̃, θ̃) satisfies Ω(R̃ = ∞, θ̃) = 1 and contains terms up to order

R̃−4. The mass of the excitations over the AdS5 vacuum is given by

M =
3πL2

8G5
R̃0 (4.17)

where G5 is the five-dimensional Newton constant5. We recall now the expression for the

metric:

ds2 = −h−2(dt2 + Vφdφ)2 + h2 ρ2
1

ρ2
3

(T 2δijdxidxj + dy2)+

+ ρ̃2dΩ2
3 + ρ2

1

[(

σ1̂
)2

+
(

σ2̂
)2]

+ ρ2
3(σ

3̂ − Atdt − Aφdφ)2 =

= gttdt2 + gRRdR2 + ρ̃2dΩ̃2
3 + 2gθRdθdR+

+ gtφ̃dtdφ̃ + gt3̂dtσ3̂+

+ gθθdθ2 + gφ̃φ̃dφ̃2 + gφ̃3̂dφ̃ σ3̂ + ρ2
1

[(

σ1̂
)2

+
(

σ2̂
)2]

+ ρ2
3

(

σ3̂
)2

(4.18)

5This approach follows the one in [1]. A more precise and detailed approach can be taken following e.g.

the work in [40]
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with

gtt = −h−2(1 + Vφ)2 + h2 ρ2
1

ρ2
3

r2T 2 + ρ2
3(Aφ + At)

2

gRR = h2 ρ2
1

ρ2
3

(sin2 θ + T 2 cos2 θ)

gθR = h2 ρ2
1

ρ2
3

R sin θ cos θ(1 − T 2)

gtφ̃ = −h−2(1 + Vφ)Vφ + h2 ρ2
1

ρ2
3

r2T 2 + ρ2
3(At + Aφ)Aφ

gt3̂ = −ρ2
3(At + Aφ)

gθθ = h2 ρ2
1

ρ2
3

R2(cos2 θ + T 2 sin2 θ)

gφ̃φ̃ = −h−2V 2
φ + h2 ρ2

1

ρ2
3

r2T 2 + ρ2
3A

2
φ

gφ̃3̂ = ρ2
3Aφ

(4.19)

We can now derive the Q charge of our solutions. Using the definition (4.6) and the

coordinate transformation (4.9) we get

Q = − gt3̂

g3̂3̂

R̃2 = (At + Aφ) . (4.20)

We note that At = (n − p)/p = O(1/R2) and Aφ = AtVφ + 1
2r∂r ln T = O(1/R4) and thus

the leading behaviour of the r.h.s. is determined by At and we have

Q =
n2(θ) − p2(θ)

p2
1

. (4.21)

Using these relations we can solve the equations (3.32) up to second order in 1
R2 and

demanding that the solutions are regular we find



























p2(θ) = d(3 cos2 θ − 1)

n2(θ) = p2(θ) + p2
1Q

m2(θ) = −p2(θ) − 2p2
1Q

V2(θ) =
1

2
cos2 θ

[

(Qp2
1 − d + 3d cos(2θ)

]

(4.22)

where d is a generic real integration constant. The J charge is given by

J =
gtφ̃

gφ̃φ̃

R̃2 =
d

p2
1

− 1 − Q. (4.23)

The conserved charges Q and J can be also obtained by evaluating Komar integrals asso-

ciated with the Killing vectors Σ̂3 (the dual vector field to σ̂3) and ∂
∂φ respectively.
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We will now solve the equations to the next order and find the transformation (4.14)

that brings the metric to the form (4.15) enabling us to check that the BPS mass formula

M =
πL2

4G5
(|J | + 2|Q|) (4.24)

is satisfied.

We have

gθ̃R̃ = [h′
1(θ̃) − 2

√
p1g1(θ̃)]

1

R̃3
(4.25)

which fixes

g1(θ̃) =
h′

1(θ̃)

2
√

p1
. (4.26)

We are not really interested in the conformal factor Ω(R̃, θ̃) and we thus proceed to the

calculation of the ratio

gR̃R̃

ρ̃2
=

1

R̃4
+

d(3 cos2 θ̃ − 1) − 6p
3/2
1 h1(θ̃)

p2
1

(4.27)

which should satisfy the equation

gR̃R̃

ρ̃2
=

1

R̃4
− 1

R̃6
. (4.28)

This requirement gives immediately,

h1(θ̃) =
p2
1 + d(3 cos2 θ̃ − 1)

6p
3/2
1

. (4.29)

Using this relation we obtain

gtt

ρ̃2
= −1 − 1

R̃2
+

2

3

(

d

p2
1

− 1 − 3Q

)

1

R̃4
(4.30)

which gives

R̃0 =
2

3
(J − 2Q) (4.31)

and thus

M =
3πL2

8G5
R̃0 =

πL2

4G5
(J − 2Q) . (4.32)

This should be compared to

M =
πL2

4G5
(|J | + 2|Q|) , (4.33)

which apparently requires that J > 0 and Q < 0. Up to now, J and Q have appeared in

the solution to the differential equations as constants of integration. As such, they can take

any real value. Constraints on their possible values should come from a global analysis of
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the solutions 6. Indeed given the leading behaviour at large R, these subleading corrections

should be completely determined by the boundary conditions at y = 0. Unfortunately we

are not able to express these charges in terms of the data at y = 0 plane which could

have allowed us to establish the above bounds on J and Q. As a matter of comparison, in

the LLM construction only the J charge is present and its value is determined by a set of

integrals performed on the y = 0 plane. In that case, the bound J > 0 is trivially imposed

by the specific type of boundary conditions at y = 0.

5. Conclusions and perspectives

In this paper we have extended to the 1/8 BPS case the construction of [1]. Due to

the reduced amount of symmetry of our background the expressions we find turn out

to be rather more complex; in particular the differential equations which determine the

background are highly non linear. We performed an asymptotic analysis for large values of

R and were able to show that solutions with the desired asymptotics and regularity exist

in this limit. Of course, a satisfactory understanding of the boundary conditions at y = 0

which lead to non-singular solutions is necessary in order to connect the geometry of the

supergravity solutions to the phase space of the quantum mechanical system arising from

the dual gauge theory on R × S3. In particular it would be very interesting to understand

the relationship between our construction and the work of [12, 13, 15, 14]. Once the space

of solutions is understood from the supergravity point of view one could proceed to its

quantisation by a procedure like that presented in [31, 32].

Our solutions have a non empty intersection with the solutions described in [11, 10] and

in [9]. It would be interesting to find the exact dictionary between different descriptions of

the same solutions in order to better clarify the role of the boundary conditions at y = 0 and

to try to recast the differential equations in a more tractable fashion. 1/4 BPS solutions can

be obtained from the general setting that we have presented by imposing some additional

constraints on the four scalar functions [30]. Some of the so-called superstar geometries

in [33] are also contained in our description. These solutions are known to have singularities

and it is possible to identify the boundary conditions at y = 0 that are responsible for them.

With a more detailed understanding of boundary conditions which give rise to non-singular

solutions, and their relation to the CFT, one may better understand the resolution of the

singularities in a manner similar to that of [34, 29, 35]. Finally different types of boundary

conditions at large R can be studied. Indeed one can find solutions with asymptotics of

the form AdS5 × Y p,q: such geometries correspond to 1/2 BPS operators in the N = 1

superconformal quiver gauge theories [36].

6As in the LLM case, the sign of J is correlated with the relative chirality of the Killing spinor with

respect to the two SO(4)’s. From the gauge theory side, as follows from the discussion at the end of

section 2, the sign of Q is correlated with the U(1)R charge of the Killing spinor. As it emerges from the

detailed analysis of appendix B, this charge is captured by the eigenvalue s with respect to a Pauli matrix

σ3̂. In our analysis we have set for definiteness s = +1. Had we chosen s = −1, Q would have been positive.
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A. Conventions

We set up our conventions for the wedge product of 1-forms

α1 ∧ · · · ∧ αn =
1

n!

∑

i

σ(i)αi(1) ⊗ · · · ⊗ αi(n) (A.1)

where the sum is over the n! permutations i and σ(i) is the parity of the permutation.

An n-form α in a d dimensional space (α ∈ Λn) is given by

α = ᾱµ1···µndxµ1 ∧ · · · ∧ dxµn =
1

n!
αµ1···µndxµ1 ∧ · · · ∧ dxµn (A.2)

with αµ1···µn the complete antisymmetrization of ᾱµ1···µn .

When a metric is present we can introduce the Hodge dual

⋆ : Λn → Λd−n (A.3)

Given a d-bein of the metric {em}m=1,···d,

⋆em1 ∧ · · · ∧ emn =
1

(d − n)!
ǫm1,...mn,mn+1,··· ,mdemn+1

∧ · · · ∧ emd
(A.4)

where indices are lowered with the tangent space metric. From this definition it follows

that

⋆ dxµ1 ∧ · · · ∧ dxµn = ⋆gµ1µ′

1 · · · gµnµ′

nem1µ′

1
· · · emnµ′

n
em1 ∧ · · · ∧ emn =

= gµ1µ′

1 · · · gµnµ′

nem1µ′

1
· · · emnµ′

n

1

(d − n)!
ǫm1,···mn,mn+1,··· ,mdemn+1

∧ · · · ∧ emd
=

=
1

(d − n)!

√
ggµ1µ′

1 · · · gµnµ′

nǫµ′

1
,···µ′

n,µ′

n+1
,··· ,µ′

d
dxµ′

n+1 ∧ · · · ∧ dxµ′

d . (A.5)

The exterior derivative of a 1-form is defined by

β = dα = ∂µανdxµ ∧ dxν =
1

2
(∂µαν − ∂ναµ)dxµ ∧ dxν (A.6)

or in terms of components βµν = ∂µαν − ∂ναµ. The generalization to any n-form is given

by

β = dα =
1

n!
∂µαν1···νndxµ ∧ dxν1 ∧ · · · ∧ dxνn =

=
1

(n + 1)!
∂[µαν1···νn]dxµ ∧ dxν1 ∧ · · · ∧ dxνn =

1

(n + 1)!
βν1···νndxν1 ∧ · · · ∧ dxνn (A.7)
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where now βµν1···νn = ∂[µαν1···νn] and square brackets indicate antisymmetrization without

normalization.

The torsionless spin connection 1-form is defined by the structure equation:

dea + ωa
b ∧ eb = 0 . (A.8)

Requiring metricity of the connection

ωab = −ωba (A.9)

allows us to explicitly express ωab in terms of the d-bein (Ea are the inverse d-bein vector

fields, defined by ea · Eb = δa
a),

ωab = −dea · Eb + deb · Ea +
1

2
(ec · [Ea, Eb]) ec =

=
[

− 1

2
(∂µeaν − ∂νeaµ)Eν

b +
1

2
(∂µebν − ∂νebµ)Eν

a+

+
1

2
ec

ρ

(

Eν
a∂νE

ρ
b − Eν

b∂νEρ
a

)

ecµ

]

dxµ =

=
[

− 1

2
(∂µeaν − ∂νeaµ)Eν

b +
1

2
(∂µebν − ∂νebµ)Eν

a+

− 1

2
Eν

a

(

∂νe
c
ρ − ∂ρe

c
ν

)

Eρ
becµ

]

dxµ =

= −dea · Eb + deb · Ea − (Ea · dec · Eb) ec (A.10)

where in going from the second to the third line we have used

0 = ∂µηab = ∂µ (eaνEν
b) = (∂µeaν)Eν

b + eaν (∂µEν
b) . (A.11)

This is an explicit realization of the identity

V · dα · W =
1

2
d(α · W ) · V − 1

2
d(α · V ) · W − 1

2
α · [V,W ] , (A.12)

which holds for any one form α and any pair of vector fields V,W .

The covariant derivative of a spinor is given by

∇µψ = ∂µψ +
1

4
ωabµΓaΓbψ . (A.13)

Group manifolds

Consider a Lie algebra of vector fields on a d-dimensional group manifold. It is a d dimen-

sional vector space of vector fields satisfying

[Ea, Eb] = f c
ab Ec . (A.14)

The exterior derivative of the dual one forms is given by

dec =
1

2
α c

ab ea ∧ eb (A.15)
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These are the Maurer Cartan 1-forms. Indeed, we have

Ea · dec · Eb =
1

2
α c

ab (A.16)

and according to (A.12)

Ea · dec · Eb = −1

2
ec · [Ea, Eb] (A.17)

which give

α c
ab = −f c

ab . (A.18)

The Lie derivative of a 1-form is defined by

(LJω) · K = ∂K(ω · K) − ω · [J,K] (A.19)

and thus

LEae
c = −f c

ab eb (A.20)

Taking these ea as the d-bein, the spin connection on the group manifold is given by

ωabc =
1

2
(−αcba + αcab + fabc) =

1

2
(fcba − fcab + fabc) . (A.21)

B. Reduction of the Killing spinor equations

In this appendix we present the step by step derivation of the results presented in section 3.

B.1 Metric and 5-form ansatz

The most generic Ansatz for our solutions is given by

ds2 = gµνdxµdxν + ρ2
1

[

(σ1̂)2 + (σ2̂)2
]

+ ρ2
3(σ

3̂ − Aµdxµ)2 + ρ̃2dΩ̃2
3 . (B.1)

The space is thus made up of a fibration over a four dimensional manifold of a squashed

3-sphere (on which the SU(2) left-invariant 1-forms σâ are defined) and a round 3-sphere

(on which the SU(2) left-invariant 1-forms σã are defined).

The left invariant 1-forms are given by

σ1̂ = −1
2(cos ψ̂ dθ̂ + sin ψ̂ sin θ̂ dφ̂) σ1̃ = −1

2(cos ψ̃ dθ̃ + sin ψ̃ sin θ̃ dφ̃)

σ2̂ = −1
2(− sin ψ̂ dθ̂ + cos ψ̂ sin θ̂ dφ̂) σ2̃ = −1

2(− sin ψ̃ dθ̃ + cos ψ̃ sin θ̃ dφ̃)

σ3̂ = −1
2(dψ̂ + cos θ̂ dφ̂) σ3̃ = −1

2(dψ̃ + cos θ̃ dφ̃)

(B.2)

and satisfy the relations

dσî = ǫ̂iĵk̂σ
ĵ ∧ σk̂

dσĩ = ǫ̃ij̃k̃σ
j̃ ∧ σk̃ .

(B.3)

With this normalization the metric on the unit radius round three sphere is given by

dΩ2
3 = (σ1)2 + (σ2)2 + (σ3)2 (B.4)
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with σa being either σâ or σã.

We choose our “d-bein” to be

em =εm
µdxµ (B.5)

eâ =

{

ρ1σ
â a = 1, 2

ρ3(σ
3̂ − Aµdxµ) a = 3

(B.6)

eã =ρ̃σã (B.7)

The only non zero Ramond-Ramond field strength is the five form F(5) and the dilaton

is assumed to be constant. The most generic Ansatz for the five form which is invariant

under the given symmetries is

F(5) = 2
(

G̃mnem ∧ en + Ṽmem ∧ e3̂ + g̃e1̂ ∧ e2̂
)

∧ ρ̃3dΩ̃3+

2
(

−Gpqe
p ∧ eq ∧ e1̂ ∧ e2̂ ∧ e3̂ + ⋆4Ṽ ∧ e1̂ ∧ e2̂ − ⋆4g̃ ∧ e3̂

)

, (B.8)

where

Gmn =
1

2
ǫmnpqG̃

mn (B.9)

⋆4Ṽ =
1

3!
ǫmnpqṼ

men ∧ ep ∧ eq (B.10)

⋆4g̃ = g̃e0 ∧ e1 ∧ e2 ∧ e3 . (B.11)

The Bianchi identity dF(5) = 0 gives rise to the set of equations,

d
(

G̃ρ̃3 − Ṽ ∧ Aρ3ρ̃
3
)

= 0 (B.12)

Ṽ =
1

2

1

ρ3ρ̃3
d(g̃ρ2

1ρ̃
3) (B.13)

d
(

Gρ2
1ρ3

)

= 0 (B.14)

d
(

Gρ2
1ρ3 ∧ A + ⋆4Ṽ

)

− 2 ⋆4 g̃ = 0 . (B.15)

B.2 Spin connection and covariant derivative

The inverse d-bein is

Em =Ξµ
m∂µ + AmΣî

3̂
∂î (B.16)

Eâ =
1

ρa
Σî

â∂î (B.17)

Eã =
1

ρ̃
Σĩ

ã∂ĩ , (B.18)

where Ξm is the inverse vierbein of εm and Σâ,ã is the inverse of σâ,ã. We will denote

ten-dimensional tangent space indices by A,B,C . . .. The spin connection is given by

ωAB = −deA · EB + deB · EA +
1

2

(

eC · [EA, EB ]
)

eC . (B.19)
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Using the explicit expressions for Em we have

[Em, En] = [Ξm,Ξn] + Σ3̂ (Ξm(A · Ξn) − Ξn(A · Ξm)) . (B.20)

We can thus write, using the relation (A.12)

ωmn = ω̃mn + e3̂ρ3
1

2
(−A · [Ξm,Ξn] + Ξm(A · Ξn) − Ξn(A · Ξm)) =

= ω̃mn + e3ρ3Ξm · dA · Ξn . (B.21)

In order to get the other components of the spin connection we will need the explicit form

of the exterior derivative of eâ = ρâσ
â − ρ3δ

â
3̂
Amem and of eã = ρ̃σã

deâ = dρâ ∧ σâ + ρâdσâ − ρ3δ
â
3̂
dA − δâ

3̂
dρ3 ∧ Amem (B.22)

deã = dρã ∧ σã + ρãdσã (B.23)

By definition

dσî = ǫ̂iĵk̂σ
ĵ ∧ σk̂

dσĩ = ǫ̃ij̃k̃σ
j̃ ∧ σk̃

(B.24)

and thus

[Σâ,Σb̂] = −2ǫĉâb̂Σĉ

[Σã,Σb̃] = −2ǫc̃ãb̃Σc̃ ,
(B.25)

so that

[Eâ, Em] =
1

ρ2
a

∂mρaΣâ +
1

ρa
Am[Σâ,Σ3̂] =

1

ρ2
a

∂mρaΣâ −
2

ρa
Amǫĉâ3̂Σĉ . (B.26)

In the end

ωâm = −deâEm +
1

2
eP [Eâ, Em]eP =

= ∂mρaσ
â + δâ

3̂
ep(ρ3

1

2
Fpm − Ap∂mρ3) (B.27)

ωãm = −deãEm +
1

2
eP [Eã, Em]eP = ∂mρ̃ σã (B.28)

and

ωâb̂ = −deâEb̂ + deb̂Eâ +
1

2
eM · [Eâ, Eb̂]eM =

= ǫâb̂ĉ

(

ρ2
a + ρ2

b − ρ2
c

ρaρb

)

σĉ + ǫâb̂3̂

ρ2
3

ρ2
1

A (B.29)

ωãb̃ = −deãEb̃ + deb̃Eã +
1

2
eM · [Eã, Eb̃]eM = ǫãb̃c̃σ

c̃ . (B.30)
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The spin connection part of the covariant derivative acting on spinors as presented in

appendix A is

1

4
ωMNΓMΓN =

dxµ

[

1

4
ω̃mnΓmΓn − 1

4
ρ3FµmΓmΓ3̂+

− Aµ

(

−1

2

ρ2
3

ρ2
1

Γ1̂Γ2̂ − 1

2
∂mρ3Γ

mΓ3̂ +
1

8
ρ2
3FmnΓmΓn

)

]

+

∑

a=1,2

σâ

(

1

2

ρ3

ρ1
ǫâb̂3̂Γ

b̂Γ3̂ − 1

2
∂mρ1Γ

mΓâ

)

+

+ σ3̂

(

1

2

(

2 − ρ2
3

ρ2
1

)

Γ1̂Γ2̂ − 1

2
∂mρ3Γ

mΓ3̂ + ρ2
3

1

8
FmnΓmΓn

)

+

∑

a=1,2,3

σã

(

1

4
ǫãb̃c̃Γ

b̃Γc̃ − 1

2
∂mρ̃ΓmΓã

)

(B.31)

B.3 Killing spinor

Conventions and Ansatz

We choose the following ten dimensional gamma matrices

Γm = γm ⊗ 1 ⊗ 1 ⊗ 1 Γâ = 1 ⊗ σ̂1 ⊗ σâ ⊗ 1 Γã = 1 ⊗ σ̂2 ⊗ 1 ⊗ σã (B.32)

The two 32 component Majorana-Weyl spinor supersymmetry parameters of the IIB theory

can be grouped into a single complex Weyl spinor ψ obeying the chirality constraint

Γ11ψ = ψ (B.33)

Γ11 =
∏

m

Γm

∏

â

Γâ

∏

ã

Γã = γ5σ̂3 γ5 = −iγ0γ1γ2γ3 . (B.34)

The supersymmetry variation of the gravitino χM is given by

δχM = ∇Mψ +
i

480
FM1M2M3M4M5

ΓM1M2M3M4M5ΓMψ . (B.35)

In order to have a supersymmetric background we need to impose that this variation is

zero giving rise to the Killing spinor equation on ψ,

∇Mψ +
i

480
FM1M2M3M4M5

ΓM1M2M3M4M5ΓMψ = 0 . (B.36)

As a consequence of our symmetry assumptions we look for a ψ of the form

ψ = ε(b) ⊗ χ̂ ⊗ χ̃(b) . (B.37)

Where ψ is an 8 component complex spinor a and χ̂, χ̃b are 2 components complex spinors

defined on the two 3-spheres satisfying

Σâχ̂ = 0 σ3̂χ̂ = sχ (B.38)

∇′
ãχ̃ = b

i

2
σãχ̃(b) (B.39)
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where ∇′ is the covariant derivative on the unit radius three sphere which has spin connec-

tion ω′
abc = ǫabc and s, b = ±1. As we are going to show in the following, this choice means

that χ̂ is a constant spinor and thus a singlet of the SU(2)L isometry of the squashed

sphere, as required by our analysis of the gauge theory description of supersymmetries in

section 2.

Isometries and Spinors

On a unit radius round three sphere there exist two linearly independent solutions to the

equation

∇aχ = β
i

2
σaχ (B.40)

for each choice of β = ±1. The sign of β is correlated with the chirality of the doublet of

solutions under the SO(4) = SU(2)×SU(2) isometry group of S3. This can be understood

as follows.

Given a d-bein ea(y) and an isometry I we choose a local orthogonal transformation Λ such

that

Λa
bTI∗(e

b) = ea (B.41)

where TI∗ is the pullback of one forms associated with I. The d-bein is thus invariant under

these transformations and it is possible to give meaning to the transformation properties

of spinors under the isometries of the metric.

In our case, since S3
≈ SU(2), we can identify the points y with elements of SU(2). For

the round 3-sphere S̃3 the action of the isometry group SU(2)L × SU(2)R is given by left

and right multiplication by generic elements of SU(2). For the squashed three sphere the

action of the isometry group SU(2)L × U(1)R is given by left multiplication by generic

elements of SU(2) and right multiplication with a U(1) subgroup.

Let’s focus on the left isometries Lg. They are defined by

Lg(y) = gy . (B.42)

As our 3-bein is built out of left-invariant one forms σa, we have by definition

TLg ∗(σ
a) = σa (B.43)

which implies that, for such transformations, Λa
b = δa

b. The action SLg on spinors of this

isometry is thus very simple

SLgχ(gy) = χ(y) . (B.44)

The action of left multiplications is clearly surjective and thus a spinor χ is invariant under

this action if and only if it is a constant spinor. This means that our spinor χ̂ is a singlet

under the SU(2)L isometry of the squashed 3-sphere, while the spinors χ̃± transform in the

(0, 1
2) for upper sign and (1

2 , 0) for the lower sign. For a discussion of spinors in squashed

3-spheres see [37, 38].
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Equations and bilinears

We turn now to the contribution of the Ramond-Ramond form to the gravitino variation.

We define

M ≡ i

480
FM1M2M3M4M5

ΓM1M2M3M4M5. (B.45)

The chirality condition on ψ and the self-duality of F(5) imply that

MΓMψ = −
(

G̃/ + Ṽ/γ5σ̂1σ3̂ + ig̃σ3̂

)

γ5σ̂2ΓMψ . (B.46)

Due to the conditions on the spinor, χ̂ and χ̃b factorise in each component of the gravitino

variation equation which then becomes the following system of coupled differential and

algebraic equations on ε7

[

∇̃µ − 1

4
FµνΞν

mγmγ5σ̂1s + iAµs −
(

G̃/ + Ṽ/γ5σ̂1s + ig̃s

)

γ5σ̂2γµ

]

ε = 0 (B.48)

[

i

2

ρ3

ρ1
γ5σ̂1 +

1

2
∂/ρ1 + ρ1

(

G̃/ + Ṽ/γ5σ̂1s − ig̃s

)

γ5σ̂2

]

ε = 0 (B.49)

[

i

2

(

2 − ρ2
3

ρ2
1

)

γ5σ̂1 +
1

2
∂/ρ3 +

1

8
ρ2
3F/γ5σ̂1s + ρ3

(

G̃/ − Ṽ/γ5σ̂1s + ig̃s

)

γ5σ̂2

]

ε = 0 (B.50)

[

i

2
bγ5σ̂2 +

1

2
∂/ρ̃ − ρ̃

(

G̃/ + Ṽ/γ5σ̂1s + ig̃s

)

γ5σ̂2

]

ε = 0. (B.51)

Note that the first equation is a first order differential 4-vector equation for ε while the

last three are algebraic 4-scalar equations.

We now define a useful set of bilinears

Kµ = ε̄γµε Lµ = ε̄γ5γµε Yµν = ε̄γµνσ1ε

f1 = iε̄σ1ε f2 = iε̄σ2ε

ε̄ = ε†γ0

(B.52)

The world indices µ, ν of these bilinears are obtained by contraction of the tangent space

indices with the vierbein εm
µ. When raising and lowering µ indices we will always use the

metric g̃µν unless otherwise is specified. By Fierz rearrangements the following relations

can be proved

K2 = −L2 = −f2
1 − f2

2 ≡ −h−2 LµKµ = 0 (B.53)

7For example the first equation is obtained as follows

(∇µ + MΓµ) ψ =

„

∇̃µ −
1

4
ρ3FµνΞν

mΓmΓ3̂ + Aµ

“

Σ3̂ + Γ1̂Γ2̂
”

− Aµ∇3̂ + MΓµ

«

ψ =

=

„

∇̃µ −
1

4
ρ3FµνΞν

mΓmΓ3̂ + AµΓ1̂Γ2̂ + M (Γµ + Aµρ3Γ3̂)

«

ψ =

=

„

∇̃µ −
1

4
ρ3FµνΞν

mγ
m

σ
3̂ + Aµσ3̂ + Mγµ

«

ψ (B.47)
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B.4 Algebraic relations

By multiplying the algebraic equations (B.49),(B.50),(B.51) with different combinations

of gamma matrices and contracting with ε̄ one can obtain the following relations for the

spinor bilinears:

Kµ∂µρ1 = 0 (B.54)

Kµ∂µρ3 = 0 (B.55)

Kµ∂µρ̃ = 0 (B.56)

Lµ = −ρ1

ρ3

f1

ρ̃
∂µ(ρ1ρ̃) (B.57)

KµṼµ = 0 (B.58)

g̃ =
s

4f1

(

b
f1

ρ̃
− f2ρ3

ρ2
1

)

(B.59)

and also equations for the 2-forms Fµν ≡ ∂µAν − ∂νAµ and G̃µν

Fµν = − 2

ρ3(f2
1 + f2

2 )

[

−
(

2 − ρ2
3

ρ2
1

)

1

ρ3
ǫµνρσKρLσ +

b

ρ̃
(KµLν − KνLµ) +

− f1ǫµνρσKρ∂σ ln(ρ3ρ̃) − f2

(

Kµ∂ν ln(ρ3ρ̃) − Kν∂µ ln(ρ3ρ̃)
)

+

+ 4f1

(

KµṼν − Kν Ṽµ

)

+ 4f2ǫµνρσKσṼ ρ

]

(B.60)

G̃µν = − 1

2(f2
1 + f2

2 )

[(

b

2ρ̃
− g̃s

)

(

f1(Kµ∂ν ln ρ̃ − Kν∂µ ln ρ̃) + f2ǫµνρσKρ∂σ ln ρ̃
)

+

− f2

(

KµṼν − Kν Ṽµ

)

+ f1ǫµνρσKρṼ σ

]

(B.61)

B.5 Differential relations

We can use (B.48) to prove the following relations

∇̃µKν = 4
(

G̃µνf1 + Gµνf2

)

− ρ3

2
Fµνf2s + 2ǫµνρσṼ ρKσs − 2g̃Yµνs (B.62)

∂µ ln f1 = ∂µ ln ρ̃ (B.63)

∂µ

(

f2

ρ3

)

= FµνKνs . (B.64)

The first equation says that Kµ∂µ is a Killing vector for gµν . We make the natural gauge

choice

Kµ∂µ = ∂t . (B.65)

The second equation can be easily integrated to give, with a suitable choice of constant

of integration

f1 = ρ̃ . (B.66)
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Note further that as a consequence of these equations and of the Bianchi identity

Ṽ =
1

2

1

ρ3ρ̃3
d(g̃ρ2

1ρ̃
3) , (B.67)

that Fµν is t independent and we can make a gauge choice for Aµ such that ∂tAµ = 0.

Integrating the equation for f2 we obtain

f2 = ρ3(c + Ats) . (B.68)

We define the coordinate

y ≡ ρ1ρ̃ (B.69)

and thus

Lµdxµ = −ρ1

ρ3
dy . (B.70)

Since K · L = 0 there is no cross term gty in the metric. We can additionally make a

coordinate choice such that there are also no gyi cross terms. We have thus reduced our

Ansatz for the four dimensional part of the metric to the following

ds2 = −h−2(dt + V1dx1 + V2dx2)2 + h2 ρ2
1

ρ2
3

h̃ijdxidxj + h2 ρ2
1

ρ2
3

dy2 . (B.71)

Note that

h−2 = f2
1 + f2

2 . (B.72)

For convenience we set

Ay = 0 . (B.73)

All the entries in the metric and in the 5-form are parametrised by a set of functions that

we can distinguish on the basis of their transformation properties in the {x1, x2} plane.

Scalars Vectors Symmetric Tensor

ρ1, ρ3, ρ̃, At Vi, Ai h̃ij

Recalling that the scalars are subject to the constraint

y = ρ1ρ̃ . (B.74)

¿From now on we will assume for definiteness that s = 1.

B.6 Specifying the spinor

Due to our gauge choice we have

K0 = e0
t = h−1 ⇒ ε†ε = h−1 (B.75)

L3 = LyE
y
3 = −ρ1

ρ3

ρ3

ρ1
h−1 = −h−1 . (B.76)

(B.77)
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We thus have:
ε†γ0γ5γ3ε

ε†ε
= −1 ⇒ iγ1γ2ε = −ε . (B.78)

We can now take the sum of equations (B.51) and (B.49) divided by, respectively, ρ̃ and

ρ1 from which we obtain

(

√

1 + e−2Gγ3σ̂1 + iγ5e
−G − 1

)

ε = 0 (B.79)

where e−G ≡ f1

f2
. The solution to this equation is given by

ε = eiδγ5γ3σ̂1ε1 γ3σ̂1ε1 = ε1 (B.80)

with sinh(2δ) = e−G. The normalization h−1 = ε†ε implies ε1 = f
1/2
2 ε0 with ε†0ε0 = 1.

These conditions are enough to satisfy all the algebraic equations (B.49),(B.50),(B.51).

Due to the three projectors (B.33),(B.78),(B.80) and the conditions on the χ̂, χ̃ spinors,

the solution space of the Killing spinor equation is two dimensional and complex.

We will now use the differential equations (B.48) and the Bianchi identities (3.13)-

(3.16) to express the unknown vectors and tensors in terms of the scalars.

B.7 The spacetime metric and the gauge field A

We define three new bilinears

ωµ = εtγ2γµε

W 1,2
µν = εtγ2γµγν σ̂1,2ε .

(B.81)

Using (B.48) we can derive

∂µων − ∂νωµ = −i
ρ3

2
F ρ

µ W 2
νρ − 2i(Aµων − Aνωµ) + 4ǫµνρσṼ ρωσ − 4g̃W 1

µν . (B.82)

We note that

ωµdxµ = −ρ1

ρ3
(ẽ1

j + iẽ2
j)dxj ≡ −ρ1

ρ3
ẽz

jdxj (B.83)

where ẽk
j is a 2-bein for the metric h̃ij . Thus, from (B.82) we can get an equation involving

dẽk. Singling out the y dependence using the (y, xi) component of (B.82)

∂y ẽ
z
j = −2

h2

ρ3ρ1

[

ρ̃

ρ3
(ρ3

3 − ρ2
1) +

f2

ρ̃
(f2ρ3 − bρ2

1)

]

ẽz
j ≡ Dẽz

j . (B.84)

With a further y independent coordinate transformation we can put h̃ij in diagonal form.

We introduce a conformal factor T and set

ẽi
j = Tδi

j ∂yT = DT (B.85)

Looking at the (x1, x2) component we can establish a relation between the remaining

derivatives of T and the connection Ai

Ai = (At + b − c)Vi −
1

2
ǫij∂j ln T . (B.86)
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The constant c can be absorbed into a gauge transformation and we will set

b = c = 1 . (B.87)

The right hand side of the {t, xi} component of equation (B.82) is proportional to b − c

and thus also this equation is consistent with our gauge choice.

We have now an expression for Ai by which we may calculate the components of Fµν . This

Fµν must be equal to the one obtained in (B.60). The contraction with Kµ is trivial. The

Fyi components give the constraint

b = c (B.88)

which is solved by our gauge choice. The F12 component gives an equation for (∂2
1 + ∂2

2)T

that we will discuss later.

We have thus reduced our set of unknowns to five scalars and one 2-vector. Two scalars

are constrained by the relations y = ρ1ρ̃ and so we have just four independent scalars and

one 2-vector.

Scalars Vector

ρ1, ρ3, ρ̃, At, T Vi

We have reduced the four dimensional metric to the form

ds2 = −h−2(dt + Vidxi)2 + h2 ρ2
1

ρ2
3

(T 2δijdxidxj + dy2) . (B.89)

To simplify the final equations we now express the 4 functions ρ1, ρ3, ρ̃, At in terms of

three independent functions that we will call m,n, p are defined by

ρ4
1 = y4 mp+n2

m ρ4
3 = p2

m(mp+n2)

ρ̃4 = m
mp+n2 At = n−p

p

(B.90)

With these definitions we have

D = 2y(n + m − y−2) . (B.91)

With some effort it can be shown that all the equations on the spinor ε are now solved.

As noted in section B.6 the space of solutions to the Killing spinor equation is 2-

dimensional and complex, thus our backgrounds preserve 4 of the 32 real supersymmetries

of the theory. The existence of the Killing spinors guarantees that the full Einstein equa-

tions are satisfied provided that integrability conditions and the Bianchi identities for the

Ramond-Ramond 5-form are satisfied. Let us now investigate what the consequence of

these final constraints are.

B.8 Differential equations

We will first establish a relation between the vector Vi and the various scalar functions.

The equation (B.62) is an equation for dK with

K = −h−2(dt + Vidxi) . (B.92)
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We can extract from this equation an expression for dV :

dV = −y ⋆3 [dn + (nD + 2ym(n − p) + 2n/y)dy] (B.93)

where by ⋆3 we mean the Hodge dual in the three dimensional diagonal metric

ds2
3 = T 2δijdxidxj + dy2 . (B.94)

Returning to the Bianchi identities

d
(

G̃ρ̃3 − Ṽ ∧ Aρ3ρ̃
3
)

= 0 (B.95)

Ṽ =
1

2

1

ρ3ρ̃3
d(g̃ρ2

1ρ̃
3) (B.96)

d
(

Gρ2
1ρ3

)

= 0 (B.97)

d
(

Gρ2
1ρ3 ∧ A + ⋆4Ṽ

)

− 2 ⋆4 g̃ = 0 . (B.98)

Substituting in the first equation Ṽ as obtained from the second equation we find

d
(

G̃ρ̃3 − 1

2
g̃ρ2

1ρ̃
3F

)

= 0 . (B.99)

We may thus set locally

dB̃ = G̃ρ̃3 − 1

2
g̃ρ2

1ρ̃
3F

B̃ = B̃t(dt + V ) + ˆ̃B

dB = Gρ2
1ρ3

B = Bt(dt + V ) + B̂ .

(B.100)

The algebraic equation (B.61) for G̃µν and for its dual for Gµν give rise to four new relations

B̃t = − 1

16
y2 n − 1/y2

p

d ˆ̃B = − 1

16
y3 ⋆3 [dm + 2mD]

Bt = − 1

16
y2 n

m

dB̂ =
1

16
y3 ⋆3 [dp + 4yn(p − n)dy] .

(B.101)

We need to impose the three equations











ddV = 0

dd ˆ̃B = 0

ddB̂ = 0

. (B.102)

The last Bianchi identity (B.98) is implied by these three. In addition to these equations

we have also

∂y ln T = D (B.103)
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which together with the previous ones can be used to see that also the consistency equation

for F12 is satisfied.

We have thus a set of 4 equations for 4 unknowns: m,n, p, T . The equations are defined

on the half space

(x1, x2, y > 0) (B.104)

and are quite complicated being a set of coupled non-linear second order elliptic differential

equations.

y3(∂2
1 + ∂2

2)n + ∂y

(

y3T 2∂yn
)

+ y2∂y

[

T 2
(

yDn + 2y2m(n − p)
)]

+ 4y2DT 2n = 0

y3(∂2
1 + ∂2

2)m + ∂y

(

y3T 2∂ym
)

+ ∂y

(

y3T 22mD
)

= 0

y3(∂2
1 + ∂2

2)p + ∂y

(

y3T 2∂yp
)

+ ∂y

[

y3T 24ny(n − p)
]

= 0

(B.105)

C. Killing vectors and the Kaluza Klein ansatz

In this appendix we present a geometrical interpretation of the bilinears that we constructed

and that we used in appendix B

Assume we have a fibration of a group manifold over some d dimensional base manifold

with metric

ds2 = g̃µν(x)dxµdxν + βab(x)
(

êa(y) − Aa
µ(x)dxµ

)

(

êb(y) + Ab
µ(x)dxµ

)

(C.1)

where êa is a basis of left-invariant one forms on the group manifold.

We define

κ = Kµ∂µ + α(x)aÊa . (C.2)

We recall that given any covariant 2-tensor a and three vector W,V1, V2 the Lie deriva-

tive of a is given by

(LW a)(V1, V2) = W (a(V1, V2)) − a([W,V1], V2) − a(V1, [W,V2]) . (C.3)

Let us calculate LKg

(Lκg) (∂µ, ∂ν) = (LK g̃) (∂µ, ∂ν) + Kρ∂ρ

(

βabA
a
µAb

ν

)

− ∂µαaβabA
b
ν − ∂να

aβabA
b
µ

(Lκg) (Êa, Êb) = Kρ∂ρβab + (Lαĝ(x)) (Êa, Êb)

(Lκg) (∂µ, Êa) = Kρ∂ρ(−βabA
b
µ) + βab∂µαb + βcdα

bAd
µf c

ba

where ĝ = βabê
aêb and f c

ba the structure constants of the group.

When K = 0, βab = kab with kab the Killing form of the group and so we obtain the

non abelian Kaluza Klein setup.

Assume for the moment that K is a Killing vector of g̃ and αaÊa is a Killing vector

of ĝ, what are the conditions on α, βab, A
a
µ such that K is a Killing vector for the whole

metric? This is easily seen from our previous equations

K(βab) = 0 (C.4)

∂µαa = K(Aa
µ) − fa

bcα
bAc

µ . (C.5)
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We can now specialise to our setting. The group manifold is SU(2) × SU(2). We can

define the ten dimensional vector

κM∂M = ψ̄ΓMψ∂M =

Kµ∂µ +

(

AmKm − f2

ρ3
s

)

Σî
3̂
∂î +

f1

ρ̃
χ̃†σãχ̃Σĩ

ã∂ĩ

(C.6)

where we have chosen the normalization χ†χ = χ̃†χ = 1. κ is a Killing vector and it is

null [39]. Since it is null we have

K2 = Kµg̃µνKν = −f2
1 − f2

2 (C.7)

which was previously seen as consequence of Fierz rearrangements and whereas here we

can see its geometrical origin. From the equation on ∇µKν we know that K is a Killing

vector for g̃µν , and moreover, due to the Killing equation on χ̃ and the properties of the

Ansatz, we have that

Σî
3̂

, χ̃†σãχ̃Σĩ
ã∂ĩ (C.8)

are Killing vector of the group manifolds. We thus conclude

K(ρ1) = K(ρ3) = K(ρ̃) = 0 (C.9)

∂µ

(

f1

ρ̃

)

= 0 (C.10)

∂µ

(

AνK
ν − f2

ρ3
s

)

= K(Aµ) (C.11)

The second one can be written in the form we already encountered earlier

∂µ

(

f2

ρ3

)

= FµνKνs . (C.12)

We have thus clarified the geometrical origin of the relations between f1, f2 and the

metric entries.
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